## Chemical Resistance of Cured Lacquer Film

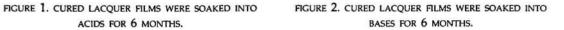
BY DR. SIRICHAI WANGCHAREONTRAKUL

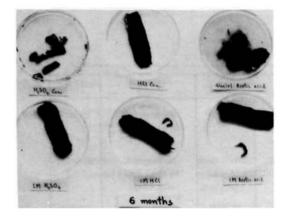
An introduction to oriental lacquer was published in a previous article of this journal.<sup>1</sup>

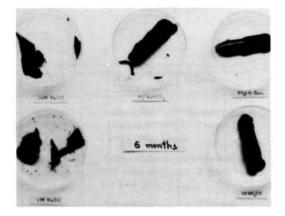
Oriental lacquer is a readily available natural product derived from the sap of the lacquer tree (*Melanorrhoea usitata*).

Lacquer has been used on such materials as wood, bamboo, metal, ceramics and stone.

Many ancient treasures coated with lacquer can be found in famous museums around the world. Most of these objects are still in good condition. Some have been subject to conservation. Before the appropriate conservation measures are carried out, the conservators need to know not only the causes of deterioration but also the physical and chemical properties of the hardened or cured lacquer.


Although it is claimed that cured lacquer has many advantageous properties, such as being weather proof and chemical resistant, <sup>2-3</sup> this claim has not been supported by any scientific evidence. The objective of the present work is to investigate the chemical resistance of cured lacquer film. The results of this study will provide a guideline of useful information for conservators and restorers to use in the future.


Two commercial lacquers were obtained from a local lacquer manufacturer in Chiengmai, Thailand. A pure Burmese lacquer from the Burmese lacquer tree was collected from Mae Cham District in Chiengmai, Thailand.


A set of 18 samples of lacquer film from each lacquer type was prepared by applying approximately 0.6 gram of each lacquer sample onto a glass slide ( $2.54 \times 7.62$  cm). The thin lacquer film was allowed to dry slowly at room temperature for 35 days. After hardening, a

44 SPAFA JOURNAL

ACIDS FOR 6 MONTHS.










FIGURE 3. CURED LACQUER FILMS WERE SOAKED INTO NON-POLAR SOLVENTS FOR 6 MONTHS.

٠

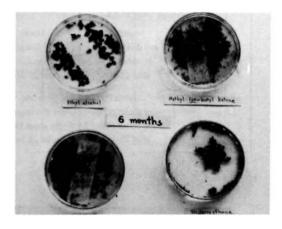
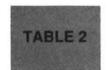



FIGURE 4. CURED LACQUER FILMS WERE SOAKED INTO POLAR SOLVENTS FOR 6 MONTHS.


SPAFA JOURNAL 45

# TABLE 1

## CURED LACQUER FILM IN ACIDS

| Reagent<br>Sample       | H2SO4<br>Conc.                                   | H2SO4<br>IM | HCI<br>Conc. | HCJ<br>1M | Acetic acid<br>glacial                          | Acetic acid<br>1M |
|-------------------------|--------------------------------------------------|-------------|--------------|-----------|-------------------------------------------------|-------------------|
| Commercial<br>Lacquer 1 | disintegrated<br>completely<br>after 1 hour      | resistant   | resistant    | resistant | disintegrated<br>by about 80%<br>after 4 days   | resistant         |
| commercial<br>Lacquer 2 | disintegrated<br>by about 70%<br>after 4.5 hours | resistant   | resistant    | resistant | disintegrated<br>by about 80%<br>after 4 days   | resistant         |
| Burmese<br>Lacquer      | disintegrated<br>by about 50%<br>after 2 days    | resistant   | resistant    | resistant | disintegrated<br>by about 40%<br>after 6 months | resistant         |

| Reagent<br>Sample       | NaOH<br>10M                                                   | NaOH<br>1M                                                    | NaH CO<br>10% | NH4OH<br>Conc. | NH OH<br>1M |
|-------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------|----------------|-------------|
| Commercial<br>Lacquer 1 | brittle<br>and disintegrated<br>by about 60%<br>after 25 days | brittle<br>and disintegrated<br>by about 50%<br>after 25 days | resistant     | resistant      | resistant   |
| Commercial<br>Lacquer 2 | brittle<br>and disintegrated<br>by about 30%<br>after 25 days | brittle<br>and disintegrated<br>by about 30%<br>after 25 days | resistant     | resistant      | resistant   |
| Burmese<br>Lacquer      | brittle<br>and disintegrated<br>by about 15%<br>after 25 days | brittle<br>and disintegrated<br>by about 15%<br>after 25 days | resistant     | resistant      | resistant   |



### CURED LACQUER FILM INBASES



## CURED LACQUER FILM IN NON-POLAR SOLVENTS

| Reagent<br>Sample       | Hexane                                        | Benzene                                      | Carbon tetrachloride                         |
|-------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------|
| Commercial<br>Lacquer I | resistant                                     | disintegrated<br>completely<br>after 2 hours | disintegrated<br>completely<br>after 2 hours |
| Commercial<br>Lacquer 2 | disintegrated<br>by about 30%<br>after 4 days | disintegrated<br>completely<br>after 2 hours | disintegrated<br>completely<br>after 2 hours |
| Burmese<br>Lacquer      | resistant                                     | disintegrated<br>completely<br>after 2 hours | disintegrated<br>completely<br>after 2 hours |

| Reagent<br>Sample       | Ethyl alcohol                                  | Ethyl acetate                                   | Methyl iso-butyl<br>ketone                      | Trichloroethane                              |
|-------------------------|------------------------------------------------|-------------------------------------------------|-------------------------------------------------|----------------------------------------------|
| Commercial<br>Lacquer 1 | disintegrated<br>by about 50%<br>after 2 hours | disintegrated<br>completely<br>after 30 minutes | disintegrated<br>completely<br>after 30 minutes | disintegrated<br>completely<br>after 2 hours |
| Commercial<br>Lacquer 2 | disintegrated<br>by about 30%<br>after 2 hours | disintegrated<br>completely<br>after 30 minutes | disintegrated<br>completely<br>after 2 hours    | disintegrated<br>completely<br>after 2 hours |
| Burmese<br>Lacquer      | disintegrated<br>by about 15%<br>after 2 hours | disintegrated<br>completely<br>after 30 minutes | disintegrated<br>completely<br>after 2 hours    | disintegrated<br>completely<br>after 2 hours |



## CURED LACQUER FILM

SPAFA JOURNAL 47

thin cured lacquer film was produced. Each of these lacquer films, unless otherwise stated, was then soaked in a chemical reagent for 6 months. The results of the experiment are summarized in Tables 1-4.

Comparisons of the chemical resistance of the cured lacquer films from the two commercial lacquers and the Burmese lacquer were made. In the study four systems of various chemical reagents were used. These were a series of acids, bases, nonpolar and polar solvents.

Table 1 summarizes the results of cured lacquer films in acidic solutions. None of the cured lacquer films survived the concentrated sulfuric acid (H2SO4 Conc.) as expected. However, the cured Burmese lacquer film showed a slight resistance to the concentrated sulphuric acid for a short period of Glacial acetic acid also time. attacked cured lacquer films but not as severely as concentrated sulphuric acid. On the other hand all three types of cured lacquer films were resistant to diluted sulphuric acid

(1M  $H_2SO_4$ ), concentrated hydrochloric acid (HCl Conc.), diluted hydrochloric acid (1M HCl), and diluted acetic acid (1M acetic acid).

The results of cured lacquer films in basic solutions are shown in Table 2. When the cured lacquer films were soaked in concentrated sodium hydroxide (10M NaOH) and diluted sodium hydroxide (1M NaOH), in both cases the cured lacquer films became brittle and disintegrated. On the other hand the cured lacquer films are resistant to 10% sodium bicarbonate (NaHCO<sub>3</sub>), concentrated ammonium hydroxide (NH<sub>4</sub>OH Conc.) and diluted ammonium hydroxide (1M NH<sub>4</sub>OH).

Surprisingly, the cured lacquer films deteriorated in most of the non-polar and polar solvents used in this study as shown in Tables 3-4. The solvents included benzene, carbon tetrachloride, ethyl alcohol, ethyl acetate, methyl iso-butyl ketone and trichloromethane. It was found that only hexane did not have any serious effect on cured lacquer films. This suggests that during the polymerization of lacquer under the conditions of this experiment, low molecular weight and less crosslinked polymers were formed.

#### ACKNOWLEDGEMENT

The author would like to express his thanks to Mr. Veranant Neeladanuvongs of the Northern Industrial Promotion Centre for the supply of the commercial and Burmese lacquers.

#### REFERENCES CITED

Wangchareontrakul, S. "Oriental lacquer and its care" SPAFA Digest, 1990, XI, 1, 53-57.

Birillo, B.

"Negoro lacquer", Arts of Asia, 1982, 12, 65-79.

#### Plesch, P.H.

'Chinese lacquer: an age-old polymer", Shell Polymers 1982, 6. 47-50.